Back to Vocabulary

Design for Dissassembly

Area: Design, planning and building

Design for Disassembly (DfD), also referred to as Design for Deconstruction or Construction in Reverse, is the design and planning of the future disassembly of a building, in addition to its assembly (Cruz Rios & Grau, 2019). Disassembly enables the non-destructive recovery of building materials to re-introduce resources back into the supply chain, either for the same function or as a new product. Designing buildings for their future disassembly can reduce both the consumption of new raw materials and the negative environmental impacts associated with the production of new building products, such as embodied carbon. DfD is considered the “ultimate cradle-to-cradle cycle strategy” (Smith, 2010, p.222) that has the potential to maximise the economic value of materials whilst minimising harmful environmental impacts. It is therefore a crucial technical design consideration that supports the transition to a Circular Economy. Additional benefits include increased flexibility and adaptability, optimised maintenance, and retention of heritage (Rios et al., 2015).

DfD is based on design principles such as: standardised and interchangeable components and connections, use of non-composite products, dry construction methods, use of prefabrication, mechanical connections as opposed to glues and wet sealants, designing with safety and accessibility in mind, and documentation of materials and methods for disassembly (Crowther, 2005; Guy & Ciarimboli, 2008; Tingley & Davison, 2011). DfD shares commonality with Industrialised Construction, which often centres around off-site prefabrication. Industrialising the production of housing can therefore be more environmentally sustainable and financially attractive if building parts are produced at scale and pre-designed to be taken apart without destroying connecting parts.

Disassembly plays an important role in the recovery of building materials based on the 3Rs principle (reduce, reuse, recycle) during the maintenance, renovation, relocation and reassembly, and the end-of-life phases of a building. Whilst a building is in use, different elements are expected to be replaced at the end of their service life, which varies depending on its function. For example, the internal layout of a building changes at a different rate to the building services, and the disassembly of these parts would therefore take place at different points in time. Brand’s (1994) Shearing Layers concept incorporates this time aspect by breaking down a building into six layers, separating the “site”, “structure”, “skin” (building envelope), “services”, “space plan”, and “stuff” (furniture) to account for their varying lifespans. DfD enables the removal, replacement, and reuse of materials throughout the service life of a building, extending it use phase for as long as possible. However, there is less guarantee that a building will be disassembled at the end of its service life, rather than destructively demolished and sent to landfill.

References

Brand, S. (1994). How buildings learn: what happens after they’re built. Viking. Crowther, P. (2005). RAIA/BDP Environment Design Guide: Design for Disassembly -Themes and Principles.

Cruz Rios, F., & Grau, D. (2019). Circular Economy in the Built Environment: Designing, Deconstructing, and Leasing Reusable Products. In Encyclopedia of Renewable and Sustainable Materials (pp. 338–343). Elsevier. https://doi.org/10.1016/b978-0-12- 803581-8.11494-8

Guy, B., & Ciarimboli, N. (2008). Design for Disassembly in the built environment: a guide to closed-loop design and building. https://www.lifecyclebuilding.org/docs/DfDseattle.pdf

Rios, F. C., Chong, W. K., & Grau, D. (2015). Design for Disassembly and Deconstruction - Challenges and Opportunities. Procedia Engineering, 118, 1296–1304. https://doi.org/10.1016/j.proeng.2015.08.485

Smith, R. E. (2010). Prefab Architecture: A Guide to Modular Design and Construction. John Wiley & Sons.

Tingley, D. D., & Davison, B. (2011). Design for deconstruction and material reuse. Proceedings of Institution of Civil Engineers: Energy, 164(4), 195–204. https://doi.org/10.1680/ener.2011.164.4.195

Created on 18-10-2023 | Update on 13-11-2023

Related definitions

Industrialised Construction

Author: C.Martín (ESR14), A.Davis (ESR1)

Area: Design, planning and building

Industrialised Construction, also referred to as Modern Methods of Construction in the UK (Ministry of Housing, 2019) and Conceptueel Bouwen (Conceptual Building) in the Netherlands (NCB, n.d.), is a broad and dynamic term encompassing innovative techniques and processes that are transforming the construction industry (Lessing, 2006; Smith & Quale, 2017). It is a product-based approach that reinforces continuous improvement, rather than a project-based one, and emphasises the use of standardised components and systems to improve build quality and achieve sustainability goals (Kieran & Timberlake, 2004).  Industrialised Construction can be based on using a kit-of parts and is often likened to a LEGO set, as well as the automotive industry's assembly line and lean production. Industrialisation in the construction sector presents a paradigm shift, driven by advancements in technology (Bock & Linner, 2015). It involves both off-site and on-site processes, with a significant portion occurring in factory-controlled conditions (Andersson & Lessing, 2017). Off-site construction entails the prefabrication of building components manufactured using a combination of two-dimensional (2D), three-dimensional (3D), and hybrid methods, where traditional construction techniques meet cutting-edge technologies such as robotic automation. Industrialised construction is not limited to off-site production, it also encompasses on-site production, including the emerging use of 3D printing or the deployment of temporary or mobile factories. Industrialised Construction increasingly leverages digital and industry 4.0 technologies, such as Building Information Modelling (BIM), Internet of Things, big data, and predictive analysis (Qi et al., 2021). These processes and digital tools enable accurate planning, simulation, and optimisation of construction processes, resulting in enhanced productivity, quality, and resource management. It is important to stress that Industrialised Construction is not only about the physical construction methods, but also the intangible processes involved in the design and delivery of buildings. Industrialised construction offers several benefits across economic, social, and environmental dimensions. From an economic perspective, it reduces construction time and costs in comparison to traditional methods, while providing safer working conditions and eliminates delays due to adverse weather. By employing standardisation and efficient manufacturing processes, it enables affordable and social housing projects to be delivered in a shorter timeframe through economies of scale (Frandsen, 2017). On the social front, Industrialised Construction can enable mass customisation and customer-centric approaches, to provide more flexible solutions while maintaining economic feasibility (Piller, 2004). From an environmental standpoint, industrialised construction minimises waste generation during production by optimising material usage and facilitates the incorporation of Design for Disassembly (Crowther, 2005) and the potential reusability of building elements, promoting both flexibility and a Circular Economy (EC, 2020). This capability aligns with the principles of cradle-to-cradle design, wherein materials and components are continuously repurposed to reduce resource depletion and waste accumulation. Challenges remain in terms of overcoming misconceptions and gaining social acceptance, the slow digital transformation of the construction industry, high factory set-up costs, the lack of interdisciplinary integration of stakeholders from the initial stages, and adapting to unconventional workflows. However, Industrialised Construction will undoubtedly shape the future of the built environment, providing solutions for the increasing demand for sustainable and affordable housing (Bertram et al., 2019).

Created on 09-11-2023 | Update on 10-11-2023

Read more ->
Open Building

Author: C.Martín (ESR14)

Area: Design, planning and building

Open Building is a term that was coined in the mid-1980s but is rooted in ideas from some twenty years earlier, when John Habraken first introduced the Support/Infill concept as a response to the rigidity and uniformity of the post-war mass-housing produced in the Netherlands (Habraken, 1961). Its fundamental principle involves separating the supporting structure of a building, considered a collective resource designed for durability, from the infill components, such as the walls and partitions that can be easily adapted to individual preferences and changing needs. This design approach places a strong emphasis on flexibility and adaptability, allowing buildings to evolve over time and be effortlessly modified or renovated to meet changing requirements. Furthermore, it encourages the participation of building occupants in the design and management of their homes, and it emphasizes the importance of creating buildings that are well-suited to their local context (Kendall, 2021). The Open Building concept introduces a holistic approach to enhancing the adaptability of the built environment, considering social, technical, and organizational aspects (Cuperus, 2001). From a social perspective, Open Building advocates for an open architecture that empowers users to customize their living spaces according to their needs and preferences, accommodating unforeseen changes in the future. On an organisational level, it proposes a redistribution of the design control, enabling top-down decisions to establish a framework within which bottom-up processes can thrive. Lastly, from a technical perspective, it pursues a systematisation of building that allows for the installation, upgrading, or removal of industrialized sub-systems with minimal implications for the overall stability of the building. This approach addresses some of the pressing challenges of the construction industry, offering the potential to enhance housing affordability and sustainability. By allowing greater flexibility in interior design and layouts, spaces can be easily reconfigured to meet changing needs, encouraging a shift towards long-term planning and fostering adaptable, future-ready living environments. Moreover, this strategy reduces the need for costly renovations and discourages demolitions, thus improving construction resilience and facilitating the seamless integration of new technologies. It successfully aligns the diverse objectives of multiple stakeholders, providing builders with a consistent support system, offering developers the freedom to experiment with layouts and ensure long-term functional performance, and granting users the possibility to make personalized choices. For decades, this inherent adaptability has been successfully applied in diverse building types, including shopping centres, office buildings, and hospitals. These buildings necessitate facilities that are 'change-ready', capable of accommodating changes over time, with a focus on long-term adaptability rather than short-term design adequacy (Kendall, 2017; Leupen, 2004). Open Building promotes environmental sustainability through its ‘levels concept’, acknowledging that building components have varying lifespans. The disentanglement and clarity of these hierarchical levels and their interfaces promotes the longevity of infrastructures while enabling incremental renewal and innovation, an increasingly common need in the construction sector. Higher levels provide a framework for the lower levels, setting the overall parameters and constraints in which the lower ones can operate (Habraken, 1998). Additionally, Open Building encourages the separation of building elements into the ‘Shearing layers of change’ articulated by Steward Brand in 1994 (Brand, 1994). These layers provide flexibility and adaptability to the buildings as they can be designed, built, and maintained independently from each other, facilitating design for disassembly practices. Additionally, through a modular coordination of standardised components, not only it is possible to increase the collaboration in the design and construction process of housing, but also to encourage a proliferation of technical subsystems that can be continuously upgraded and scaled-up within an open framework (Kendall & Dale, 2023b). In the housing realm, a key difference between traditional design and the Open Building approach is their underlying methods. Traditional design examines diverse household types and lifestyles from an anthropologic perspective, suggesting various typologies. In contrast, Open Building focuses on creating an open system with no predefined designs. Instead, it operates with a framework of rules, zones and categories to enable the customisation of each dwelling by the user (Habraken, 1976). The adoption of Open Building was a response to the rigidity and waste caused by continued adherence to functionalism where buildings were designed according to the “form-follows-function” principle and became obsolete or impractical for the coming generations and costly to maintain. On the other hand, open architecture can cater to local and cultural demands, embracing the complexity of the built environment by acknowledging that it cannot be fully controlled or shaped by a single agent (Kendall, 2013; Kendall & Dale, 2023a; Paulichen et al., 2019). This encourages community involvement in the design and construction process, creating a sense of ownership and fostering inclusivity. There are many examples across Europe of residential Open Building such as Gleis 21 in Austria, R50 Cohousing in Germany, or Stories in Netherlands. Other cases have been developed as open systems rather than individual projects, replicated and adapted to diverse locations but following the same strategy, as for example the Superlofts by Mark Koehler Architects, which since 2016 has built seven projects in the Netherlands out of this system. Determining whether a project is an Open Building and the degree of flexibility it offers can be measured through a classification chart developed by the Open Building Collective, which is based in the principles showcased in their Manifesto. The dissemination of these exemplary projects through publications (Schneider & Till, 2007), awards, conferences and the Open Building Collective, has stimulated the exchange of knowledge between researchers, practitioners and other stakeholders, spreading the interest in this concept and its practical implementation. Despite its potential benefits, the implementation of Open Building in multi-family housing faces challenges due to entrenched traditional practices, regulatory barriers favouring fixed layouts, and the short-term perspectives among developers, investors, and clients (De Paris & Lopes, 2018; Montaner et al., 2015). However, successful Open Building projects around the globe demonstrate that its capacity to address holistically the social, technical, and organizational aspects of a changing society. It encourages the space appropriation at the infill level while ensuring resilience and robustness in the support level, fostering enduring and inclusive buildings that allow diverse households to coexist and evolve over time (Kendall, 2022).

Created on 14-11-2023 | Update on 15-11-2023

Read more ->

Related case studies

Related publications

No entries

Relational graph

icon case study Case Study
icon case study Concept
icon case study Publication
icon case study Blogposts